Total	No.	of Questions : 8] SEAT No. :
P59	3	[Total No. of Pages : 3
		[5869]-206
		S.E. (Civil)
		GEOTECHNICAL ENGINEERING
		(2019 Pattern) (Semester - IV) (201008)
Time	: 21/2	[Max. Marks: 70
Instr	uctio	ons to the candidates:
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
	<i>2</i>)	Neat diagrams must be drawn whenever necessary.
	<i>3</i>)	Figures to the right indicate full marks.
	<i>4</i>)	Assume suitable data, if necessary and mention it clearly.
	<i>5</i>)	Use of non-programmable calculator is allowed.
Q 1)	a)	Differentiate between light compaction test and heavy compaction test.
		Draw typical compaction curve for both test. [6]
	b)	Describe "Proctor needle in field compaction control". [6]
	U)	Describe Proctor needle in Held compaction control. [6]
	c)	State and explain the terms involved in Boussinesq's circular load
		equation for vertical stress determination. [6]
		OR
		OK .
<i>Q</i> 2)	a)	Explain the factors affecting Compaction of soil. [6]
	b)	What is pressure by the Evelsin its significance and days a next death of
	b)	What is pressure bulb? Explain its significance and draw a neat sketch of
		pressure bulb for concentrated point loading. [6]
	c)	A concentrated load of 25 kN acts on the surface of homogeneous soil
		mass of large extend. Calculate stress intensity at a depth of 8.0m by

Q3) a) State Mohr- Coulomb's equation for shear strength of soil. Discuss the factors which affect the shear strength parameters of soil.[6]

using Boussinesq's theory at a horizontal distance of 2.5m.

P.T.O.

[6]

	b)	Determine the shear strength in terms of effective stress on a plane within a saturated soil mass at a point where the total normal stress is 200 kN/m and pore water pressure is 80 kN/m ² . The shear strength parameters it terms of effective stress are, $c' = 16 \text{ kN/m}^2$ and $\Phi' = 39^\circ$. [6]	n ²
	c)	Explain different drainage conditions in triaxial test. [5] OR	[]
Q4)	a)	State and explain the merits and demerits of direct shear test. [6]	[6
	b)	In a consolidated drained triaxial test, a specimen of a clay fails at a centressure of $60~\text{kN/m}^2$. The effective shear strength parameters are $c=15~\text{kN/m}^2$ and $\phi=20^\circ$. Determine the additional stress required for the failure.	e
	c)	Explain vane shear test procedure with a neat sketch and formula. [5	5]
Q 5)	a)	Discuss coulomb's wedge theory for determination of earth pressure.[6]	6]
	b)	A wall with a smooth vertical back 10m high, supports a purely cohesive soil with $c = 9.81 \text{ kN/m}^2$, & $\gamma = 17.66 \text{ kN/m}^3$. Determine (i) Total Rankin's active pressure against the wall; (ii) Position of zero pressure.	S
	c)	Explain Rehbann's graphical method for evaluation of earth pressure.[6]	[]
Q6)	a)	Describe effect of wall moment with respect to earth pressure. [6]	ġ\ 9
	b)	Compute the intensity of active earth pressure at a depth of 8 m in dr cohesionless sand with an angle of internal friction 30° and unit weight of 18 kN/m³.	of
	c)	Explain Culmann's graphical method for evaluation of earth pressure.[6	[]
Q 7)	a)	Classify the different modes of failure of finite and infinite slopes. [6]	6]
	b)	Discuss causes and remedial measures of Landslides. [6	[[
	c)	Analyze the stability of soil using friction circle method with neat sketch OR	

[5869]-206

- **Q8**) a) Explain the various methods to protect slopes from failure with clear sketch. Also list out the factors to be considered in selection of suitable method. **[6]**
 - Explain steps involved in the stability analysis of slopes by method of b) slices. **[6]**
 - c)

Discuss "Taylor" Stability Number" for stability analysis of finite slope.

[5]